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ABSTRACT 

Dynamic stability and parametric resonance of longitudinally excited 
cylindrical propellant tanks a r e  investigated to determine the significance 
of this form of response in launch vehicle systems. A theoretical analysis 
is conducted to predict the dynamic stability of a simplified model consisting 
of a partially liquid filled cylinder which has a rigid flat bottom, an internal 
ullage pressure,  and a rigid top mass.  
shells a r e  used to determine natural frequencies, forced axisymmetric 
response, and dynamic stability of the model. 
pared with experimental observations for  a range of several  significant 
parameters. 
set of Mathieu-Hill equations, approximate solutions a r e  presented which 
allow relatively easy determination of stability for the case of principal 
parametric resonance. 
model of a Saturn-V LOX tank to determine the influence of ring stiffeners. 
Instabilities and many forms of nonlinear response a re  found to be present 
for tanks having less  than three stiffener rings. 

Donne11 equations for cylindrical 

Numerical results a r e  com- 

Although it i s  found that the stability is governed by a coupled 

Additional experiments a r e  conducted for a 1 / 16-scale 
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NOTATION 

a 

C S  

E 

f 

gX 

H 

HS 

h 

M 

MS 

M** 

m 

radius of the shell 

inner radius of the tank 

speed of sound in the liquid 

E/ps, speed of s t ress  waves in the shell 

modulus of elasticity 

excitation frequency in cps 

standard acceleration of gravity 

nondimensional excitation amplitude (Zow / g) 

h/a, nondimensional liquid depth 

h,/a, nondimensional thickness of shell 

depth of liquid 

thickness of shell 

mass  moment of inertia of top weight about z axis 

length of the shell 

top m a s s  

shell mass, 2rahSl ps 

nondimensional top mass  

one-half of the number of circumferential nodes; 
cos (me) 

s t r e s s  resultants in the shell (linearized) 

dynamic part  of initial-state s t ress  resultants 
(linearized) 

s ta t ic  part  of initial-state s t ress  resultants 
(linearized) 

ix 



NOTATION (Cont 'd) 

n axial wave number; s inn rx l l  

P 

PB 

P 

PO 

Pr 

Px, P8 

*on 
B 

t 

wa 

xO 

x 

V 

P 

PS 

D 

nondimensional p r e s sur e, p / E 

nondimensional pressure (axisymmetric) due to 
bottom motion in a rigid tank 

pressure in the liquid 

ullage pressure 

pressure loading on the shell 

external loads on shell in x and 0 direction,respectively 

generalized loading due to PB 

cylindrical coordinates (space -fixed) 

time 

u, v, w, x, y, nondimensionalized by the radius a 

displacements along x, 8, r direction, respectively 

radial tank displacement at  an antinode 

nondimensional amplitude of axial excitation 
(Xo = %,/a) 

excitation displacement 

displacement amplitude of axial excitation 

axial wavelength parameter ( m a l l  ) 

Poisson's ratio 

mass  density of liquid 

mass density of the shell 

nondimensional frequency, (wa/cs) 

X 



NOTATION (Cont'd) 

Qk k-th eigenvalue wka/cs 

w circular frequency of excitation 

Super 6 c r ipt s and Subs c ript s 

related to the complementary solution 

related to the particular solution 

(-1 the amplitude of ( ) 
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DYNAMIC STABILITY AND PARAMETRIC RESONANCE I N  

CYLINDRICAL PROPELLANT TANKS 

By Daniel D. Kana, Wen-Hwa Chu, 
and Tom D. Dunham 

Southwest Research Institute 

INTRODUCTION 

General 

Longitudinal dynamics i s  recognized a s  a very important part .of the 
behavior of launch vehicles during flight. 
elastic containers plays a dominating role in overall vehicle response under 
longitudinal excitation since liquid pressures  form the dominant effective 
masses, as well a s  avenues of energy feedback in a vehicle structure. As a 
result, the synthesis of vehicle structures into relatively simple spring- 
mass representations provides only a gross approximation of vehicle 
response, for the overall behavior of the liquid and elastic tank can only be 
obtained by careful consideration of both linear and nonlinear interactions. 

The interaction of liquids and their 

Various types of dynamic responses of representative vehicle-tank 
systems have been observed experimentally for  longitudinal excitation of 
laboratory models, as part  of the ear l ier  effort under the present program . 
F o r  moderate and higherfrequencies, three forms of response appeared to 
be the most significant, depending on the exact configuration of the tank and 
i ts  stiffener system. 
modes occurs primarily as large pressure amplifications within the liquid 
accompanied by very small wall responses. On the other hand, response in 
nonaxisymmetric modes appears in the form of relatively large harmonic 
wall responses accompanied by only minor pressure amplitudes. Finally, 
for unstiffened o r  lightly stiffened tanks, the dominant form of response 
occurs as parametric modes in which large symmetric harmonic pressure 
oscillations a r e  accompanied by large -amplitude 1 / 2  - subharmonic wall 
motion in nonsymmetric modes, a nonlinear response which results from 
instabilities in linear responses. 

2 

Direct linear harmonic response in axisymmetric 

The f i rs t  two of the above-described responses have been given con- 
siderable attention; reviews of much of the work a r e  given in References 2 
through'4. The third, nonlinear form of response has been studied only 
little, particularly from the launch vehicle point of  vie^^'^. 
tional work which was recently translated from the Russian l i terature is 
given in References 5 and 6 .  
which deals with dynamic stability of anisotropic shells, is very closely 

Some addi- 

The investigation of Bagdasaryan and Gnuni5, 



related to the present study f o r  the case where the presence of stiffeners 
produces effective orthotropic properties in cylinders. 

Dynamic instability and parametric resonance have been studied both 
analytically and experimentally for the case of a full tank only39 4 .  
the other hand, liquid depth variations, ullage pressure, and coupled end 
masses  were observed to exert a strong influence on the vibrational response 
of a propellant tank2. Therefore, the purpose of the present study i s  to 
investigate both analytically and experimentally the dynamic stability and 
parametric response of a longitudinally -excited, par tially -filled elas tic 
cylinder subject to both ullage pressure and a rigid top mass.  
comparison between theory and experiment, results a r e  obtained for an 
unstiffened, flat-bottom cylinder. Subsequent experimental results a r e  then 
obtained for a more representative tank model to indicate the influence of 
longitudinal stiffeners and ring baffles on the dynamic instability mechanism. 

On 

To facilitate 

Description of Models 

Most of the work herein was  conducted in a liquid-tank system such 
as that shown in the schematic of Figure 1, where the analytical coordinate 
system is also defined. This configuration i s  designated a s  Tank A fo r  the 
purpose of this report. A photograph of Tank A and i ts  associated apparatus 
is shown in Figure 2. 
stainless steel sheet which was rolled and butt-welded along a longitudinal 
seam. The lower end is spot welded to a rigid flange which, in turn, is 
bolted to a flat, rigid base which forms the tank bottom, a s  well as the 
attachment to the electrodynamic shaker armature.  The upper end is spot 
welded to a rigid end disk which also forms a mount for  and part of the top 
mass.  Two rows of 0.020-inch diameter spot welds a r e  used at each end. 
Spots a r e  spaced 1/8-inch apart with 1 / 8  inch between rows. 
sealed with epoxy cement to form an airtight system. 
annular top masses  were fabricated to fit the top support. 
the model liquid. 

The tank i s  fabricated of 0.005-inch thick type 302 

Both ends a r e  

Water is  used as 
Several different 

The instrumentation for Tank A, a s  shown in Figure 2, is essentially 
the same as that used for studying elastic-tank responses in the ear l ier  
work2; therefore, i t  will not be described here. 
a r e  in the mechanical support for  the tank wall  displacement transducer, and 
these can clearly be seen in the photograph. 
radial displacement to be monitored at  all points on the tank wall. 

The only different features 

As before, this system allows 

S'ome additional experiments were conducted in the 1 / 16-scale model 
of the S-IC LOX tank which was fabricated ear l ier  in the program. 
details of this tank and i ts  associated instrumentation system were given in 
the results of that work2. 
schematic of this tank a r e  given in Figures 3 and 4, respectively. 

Complete 

However, for convenience, a photograph and 
It may be 
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. noted that no top mass is used with this tank. 
is designated a s  Tank S-0, S-1, etc., depending on the number of ring baffles 
installed. A complete. schematic of all tank configurations used in the present 
study is given in Figure 5. 

For  the present purposes, it  

Experimental procedures used for both of the above tanks consisted of 

Detailed procedures 
observing radial wall response and liquid pressure at  the center of the tank 
bottom for various input accelerations and frequencies. 
for obtaining stability boundaries, as well as nonlinear responses, a r e  the 
same as in the previous work 2 . 

THEORETICAL ANALYSIS 

Dynamic stability of the system shown in Figure 1 will be analyzed 
From ear l ier  work, a s  well as  using bending theory of cylindrical shells. 

preliminary experiments? it is found that instability and parametric resonance 
occurs in the liquid-tank system in a certain pattern. 
system responds in axisymmetric linear modes which can be called the 
initial state. Then, under certain conditions of excitation, nonaxisymmetric 
perturbations which a r e  superimposed on the initial state become unstable 
and, subsequently, grow into a nonlinear parametric response called the 
final state. 
previously described in which the shell wall responds in a nonsymmetric 
1 /2-subharmonic motion referred to as the principal parametric resonance. 

That is, f irst  the 

The dominant form of displacement in the final state is  that 

A detailed analytical description of the instability mechanism for a 
full tank has been given by Kana and Craig3, 
method of Bolotin7. The qualitative aspects of this description also apply in 
the present case.  Thus, i f  one separates the initial-state shell motion from 
that of the nonlinear final state, the perturbed motion remains. The analysis 
of only the initial state, and the perturbed motion is carr ied out for the pres -  
ent system. 
the final par t  giving the equations governing dynamic stability. 

by the use of the perturbation 

The formulation i s  logically separated into several parts, with 

Shell Equations 

Sanders8* 9 has derived a set  of nonlinear equations for a general 
shell based on the Donnell-Mushitari-Vlasov approximations. Similar 

These equations provide a description of the nonlinear final-state displace- 
ments of the present system as follows: 

equations for  cylindrical shells have been given by Bieniek, et al. 10 . 

3 



- azu --+-- v a2v v aw t- 1 - v  - a 2 ta-)t--t--- aw a2w v aw a Z w  
ax 2 a axae a ax .2a2 (802 axae ax a x ~  a~ ae axae 

- h s  - 2 [et- 2 a4, t--] 1 a4, 

12 a2 ax2ae2 a4 ae4 

Further, the nonlinear forms of s t r e s s  resultants a r e  

Nxxl =-{[%+-(-,"] 1 aw + v  [ - ! L k . + ~ + ~ ( & ) 2 ]  
1 - v  2 ax 2 ax a ae a 2 aae 

Equations (1) a r e  in agreement with Equations (7)  through (9) of Bieniek, 
et al., l o  except that Nxxl, Nxel, Nee1 in Equation ( I C )  appears inside the 
differentiation signs. Since the radial component of force due to Nxxl is 
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Nxxi (aw/ax), the net radial force due to N,1 i s  a /ax INxxl (aw/ax)] a s  
indicated in Equation (IC).  

It should be emphasized that Equations (1) contain nonlinear terms 
contributed by two sources. 
nonlinearities caused by rotations of the shell elements. 
linearity is described in detail on page 196 of Bolotin?, 
linear terms result from the use of the nonlinear strain-displacement 
relations. For  the present study, we wil l  follow the philosophy of Bolotin 
and assume that the geometrical nonlinearities alone a r e  sufficient for  
determining dynamic stability, * As a result, the governing shell equations 
reduce to 

The underlined terms result from geometrical 

The remaining non- 
This source of non- 

where the Lij a r e  the corresponding linear operators in Equations ( l) ,  and 
the s t r e s s  resultants Nxx, Nx@, Nee a r e  given by the corresponding linearized 
forms of Equations (2). Equations (3) can be used to study all aspects of the 
present vibration problem, so long as the details of the aforementioned per-  
turbation process is understood. 

Thus, for f ree  vibrations, we set 

and use homogeneous boundary conditions at  the base of the tank. 
symmetric and nonsyrnmetric natural modes can then be determined. 

Both 

*We emphasize, however, that to determine the character and amplitude 
of the subsequent nonlinear motion of the final state requires the use of the 
complete form of Equations (1). 
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For linear forced axisymmetric vibration, which comprises the initial 
state, we again use Equations (4) but impose a forced displacement at  the 
base of the tank. 
state then allows calculation of the dynamic components Nxxa, Nxea, Neea 
by the use of the linearized form of Equations (2). 

Only a symmetric response results. The solution of this 

Finally, Equations ( 3 )  are used to determine dynamic stability of 
perturbed motion by setting 

using homogeneous boundary conditions at  the base of the tank, and analyzing 
the stability of the resulting equations. 

In all of the above cases, the shell loads px and pe will be neglected. 

Natural Frequencies of Partially-Filled Tank with Top Mass 

This section deals with vibrational modes whose radial displacements. 
The case of axisymmetric vibration is contained a r e  proportional to cos me. 

a s  a special case with m = 0. Expanding the axial displacement into a Fourier 
cosine ser ies  inxplus aquadratic polynomial to satisfy the two end conditions, and 
circumferential and radial displacements into Fourier sine ser ies  inx, there results 

00 

v = Cmnsin (y) sin(m6)cos (at)  
n =  1 

a3 nrx W = Am, sin ( T )  COS (m6)cos (at)  
n =  1 

The boundary conditions are:  

a 2 w  u = o ,  w = o ,  v = o  , - = o  3 

axc; 
At X = I / a :  

a 2 w  
2 - O  ax 

-- a u  
ax - = M * * @ J ,  W = O ,  V = O  , 

O L x L I  

6 



where 

. f o r m  = 0 
M(l  - v 2 )  

2npsa3Hs 
M** = 

A very large number can be used for M** when m 2 2. 

To satisfy the boundary conditions on axial displacement, one has, 
from Equation (7a), 

and, from EquatiQn (7e ), 

a, (- t M**%) BmO t (- $ t (-l)n M**G?k) Bmn 
n =  1 

B2 (:)2 = - a 1  - - M*9!G?C 
1 2  

By Fourier expansion, the x-independent Fourier coefficient (n' = 0) 
of the axial equation of motion (3a) yields 

00 

B B ~ O =  C Nomn mn 
n =  1 

a3 

7 



where 

and 

l / Q \  

Q /a  

- -La Xcos ( F X )  dX 
Q 

0 

Q / a  
X2cos (7 nn a X) dX 

Q 
0 

To be used later, one can similarly define 

H 
- nn a An - - (H - X) sin(XnX) sin (Xn,X) dX;  Q 

0 

8 



. Note that this term includes the effects of hydrostatic pressure.  

Similarly, for n' > 1, the cos (n%x/ l )  coefficient of the axial 
Equation (3a) yields 

n =  1 n =  1 

The sin(n'.rrx/l) coefficient of the circumferential Equation (3b) yields 

n =  1 

The sin (n'.rrx/l) coefficient of the radial Equation (3c) yields 



where, for Equations (9) through (ll),  we define 

nna ntna , A,I =- Q An = - Q 

and, in Equation (3c), for the added mass pressure [obtained from 
Equations (1 8) in the next section] we have used 

00 00 P= - 1 A ~ ~ G ~ ~ ~  sin ( Ix) n’na cos(m6) 

n t = l  n = l  

The effects of the ullage pressure appear in Equation (11). 
radial Equation (3c), the effect of initial tension due to the ullage pressure, 
the hydrostatic pressure, and top weight a r e  included. 

Thus, in the 

where all ser ies  have been truncated to N-terms. Further,  

and each submatrix of the square matrices is an N X  Nmatrix. 
matrices of the column matrix a r e  each a column matrix given by 

The sub- 

, 

The elements of the N X  N submatrices a r e  given in Appendix A. 1. 
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Natural frequencies can be determined by a t r ia l  and e r r o r  method 
from the condition that the determinant of the coefficient matrix in 
Equation (12) be zero. Then, subsequently, components of the natural 
modes can be determined from matrix inversion of Equation (12). These 
components can 
the form 

N 
v k =  1 

n =  

then be normalized with respect to Aml and expressed in 

Generalized Added Mass of Liquid 

For  radial shell vibrations that a r e  proportional to cosme,  the liquid 
exerts a radial pressure which may be regarded as an apparent mass  Mmnin 
which is  added to the cylinder mass .  
quantity, 

We now derive an expression for this 

The fluid is assumed to be nonviscous, irrotational, but compressible. 
The velocity potential corresponding to the mn-th component of shell motion 
for small disturbances is governed by the wave equation which for  periodic 
motion is 

L O  

The boundary condition on the wall i s  

Wrnn awmn --- at r = a (wmn outward positive) a r  - at 

where the mn-th component of radial shell motion is 

and we assume that fn(x) is an orthogonal set of functions in the interval 
[ 0, I 1. The boundary condition at  the bottom is: 

11 



at  x = o  a+mn -= 0 ax 

When frequency of excitation is much higher than the leading few 
liquid surface sloshing frequencies, the f ree  surface condition can be approxi- 
mated by 

By separation of variables, a particular solution can be constructed to 
satisfy the boundary conditions on the wetted surface [ E q s .  (1'4) and (16)] a s  

with Fourier expansion of fn(x) being 

where 

and 

where 
1 

12 



One can then add a complementary solution, satisfying homogeneous boundary 
conditions on the wetted surfaces so that the net velocity potential satisfies the 
approximate free  - surfac e cond.ition: 

where 

pmj is the j-th root of Jk(Pmj)  = 0 

and 

where 
1 

00 

DknEkj 
m k=O 

13 



The linearized pressure i s  given by the Bernoulli equation: 

Wmn 
Pmn = -P 7 

The nl-th component of generalized force i s  given by integration of the loading 
with a weighting function fn~(x) :  

from which the generalized apparent mass  can be shown as  

in which 

14 



Note then that the mn-th component of pressure i s  

N - 2-  
d Amn 

Thus, Mmnrn is the coefficient of (d2/dt2) (Xmn) in the n'-th component of 
shell motion exhibiting a cos (me) mode of vibration. 
coefficient in Equation (1 l), we note from Equation (6c) that fn(x) assumes the 
form 

To use this generalized 

Forced Axisymmetric Response 

Now, assume the tank is excited axially. The same shell displace- 
ment forms [Eqs,  ( 6 ) ]  a r e  again used. 
displacement bec ome 

The boundary conditions on axial 

At X = 0, u = 'XO cos (at) 

au 
ax --= MIIJ22U Q 

At X =- a '  

To satisfy these conditions*, one has, from Equation (6a): 

%TI = 0 is assumed throughout this section. Further, superscript p designates 
particular solutions. 



A Fourier method similar to that in the previous section is now 
utilized. 
yields 

Thus, the x-independent Fourier coefficient (n' = 0) of Equation (3a) 

2 1 - v  2 t (1 - v 2 )  - m - 2 2 x20 m 
2(1 t v )  $2 

B,o = - 
2( 1 - v 2 )  a2 

After collecting BmO terms, one finds 

16 



Forn '  2 1, the axial Equation (3a) yields 

The circumferential Equation (3b) yields 

Finally, the radial Equation (3c), along with Equations (1 8), yields : 

17 



r 00 00 

J n =  1 

Coefficients for Equations (21) through (23) a r e  given in Appendix A. 2. 

As a result of the axial motion of the tank bottom, the liquid exerts a 
B generalized radial pressure -90n on the tank wall. 

derived from a one-dimensional velocity potential which satisfies the wave 
equation along with the boundary conditions 

This pressure can be 

$ B = O  a t  x = h  

a+B .. 
ax 0 -= x w sinwt at  x = 0 

The velocity potential which satisfies these conditions can be found as 

w -&Osinot sin [- (h - xi] 
+B = - - c o  , 

w 
-cos (E) 
c O  

Thus, the generalized loading (which results from the application of the 
Fourier process) relative to the n'-th tank-displacement component can be 
express.ed as: 

18 



h 
~ 0 2 2 ~  cos (ut) sin (2- (h - XI) fni(X) 

EHs -cos (E) dx 
a 

CO - 
0 

C O  

€3 
B qon - 1 QOnt = -- - 

EHs an, 2 
0 

where 

1 1  2 = - -  
an' 2 a 

The amplitude of this loading becomes 

where w e  define 

In matrix form, for N-term ser ies  expressions it follows that 

Each of these is a 3NX 3N square matrix whose nine elements a r e  each N X N 
aquare submatrices. 
Equation (12), the elements of which a r e  given in Appendix A. 1. 

The submatrices a r e  the same as  those appearing in  
Also 

{ ip}  = 

m =  

19 



Each of these i s a  3N X 1 column matrix whose three elements a r e  each 
NX 1 column submatrices. 
a r e  given in Appendix A. 3. 
Equations (13a) since Equations (25a) represent displacements for forced 
oscillation (i. e. ,  particular solution). 

Elements of the submatrices of Equations (27) 
The elements a r e  different from those of 

The amplitude of the force response is determined by the inversion of 
Equation (25); i. e. ,  

{P}  = {[VI -3 [E]}-1 {f} 

Governing Equations f o r  Dynamic Stability 

General Formulation. - W e  now expand the shell displacements in terms 
Qf the natural modes determined by Equations (1 3b). 
therefore, a r e  

The displacements, 

N 1 

For  the present study, the stability of nonsymmetric (m L 2)  responses 
only wil l  be investigated. 
sections, the n' = 0 component of the axial Equation (3a) yields 

Again, using aFourier* procedure as  in the previous 

and, using Equations (8) and (9) ,  this reduces to 

*Note that the standard Galerkin procedure could also be' used here, since 
the coordinate functions (13b) satisfy all  boundary conditions. 

20 



. The n ' z  1 component of the axial Equation (3a) yields 

and, using Equations (8) and (9), this reduces to 

(31) 
The circumferential Equation (3b) yields 

N N 

n = l  2 n = l  
t (e 6 t rn2) Cmnkbnin t mAmnk6nin 

and, using Equations (8) and (lo),  this reduces to 

3N r N 

Finally, the radial Equation (3c), along with Equations (18), yields: 

21 



3N r N N 

Then, in view of Equations (8) and (S), this reduces to 

= o  (33) 

where the tension terms a r e  

22 



along with 

- - 1 /'" sin(&X) sin (AniX) sin (hniiX) dX ; 
dntlnln 2 

n1 a 

1 en' = - cos ( An' tX) cos (XnX) sin ( XnlX) dX 2 an' 0 

Additional coefficients in expression (34) a r e  now considered. TO 
derive the initial-state dynamic s t ress  resultants, consider the particular 
axisymmetric (m = 0) solution due to axial excitation, with the following 
components of displacement: 

00 '@E = 1 2' mn sin(AnX) 
n = l  

These displacements a r e  obtained from Equation (27a) after solving 
Equation (28). 
by substituting Equations (35) into the linearized form of Equations (2). 
the axial dynamic component, there results 

The dynamic initial-state s t ress  resultants a r e  then obtained 
For 

which, for convenience, can be expressed as  

Thus, 

The derivative of the axial dynamic component of the initial-state 
s t r e s s  resultant is: 
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or  

Thus, 

(37) N 3 n ~ ~  = -XnrlBmnrl 2 -P t vXnrtAm,c~ -P , n"? 1 

Finally, the circumferential dynamic component of the initial-state 
s t r e s s  resultant is 

o r  

The refor e, 

Equations (36) through (38) have been used in Equation (33). 

Equations (31) through (33) a r e  the governing equations for dynamic 
stability of nonsymmetric modes (m 2 2) of the present system. 
N-term finite se r ies  approximations throughout, these equations can be 
written in a more compact matrix form as 

By using 

[GI {g} + [ G I  {a}- [ + I  Xocos(wt) {a} = O  
3NX3N 3NX1 3NX3N 3NX1 (3NX3N) 3NX 1 (39) 

where the 3N X 3N matrices are of the form: 
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8 1TI = 

and each submatrix is an N X 3N matrix. 
a r e  given in Appendix A. 4. 

The elements of these submatrices 
The remaining column matrices a r e  

.. 

whose elements a r e  the time-dependent parts of the k = 1 to 3N eigenvectors. 
Equation (39) can be solved by the method given in Meadows1 l .  However, this 
method requires a lengthy computer program. 
to a one-mode approximation. 

A s  an alternative, we resort  

One-Mode Approximation. - An approximation using one mode* of the 
eigenvector expansions (29)  can be reduced directly from Equation (39). 
However, to allow a more lucid description, we repeat the procedure of the 
previous section a s  it applies to the one-mode case. 
a r e  taken a s  

The shell displacements 

nrx 
I 

N 

n =  1 
v k  = ak(T) 1 cmnk sin-sinme 

nnx 
N 

n =  1 
wk = ak(T) Amnk sin-cos I me 

From these expressions, it is clear that the one-mode approximation refers  
to the eigenvectors and not to the coordinate functions themselves. 

To form an equation governing the dynamic stability of the k-th 
eigenvector cor r e sponding to dominantly radial motion, we subs ti tute 
Equations (41 ) into Equation (3c) only and, simultaneously, utilize 
Equations (18) for the apparent mass  term, a s  well a s  Equations (8) 

is synonymous. 
*Note that "one mode expansion" o r  "single eigenvector expansion" 
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through (11) to eliminate the coefficients of uk  and vk. 
single equation in terms of the coefficients A 
equation is applied the Galerkinprocedure with respect to the radial component 
(41c) of the k-th eigenvector. There results 

There results a 
of wk. Finally, to this mnk 

N N  

It may be noted that the above procedure implies that the axial Equation (3a) 
and circumferential Equation (3b) a re  approximately satisfied since axial and 
circumferential displacements a re  small for the dominantly radial mode 
(eigenvector). 

Changing the subscript s to n1 and rewriting this equation, one has 
- L. - 
Msk tKgk - TXO COS (Ut) ak = 0 

where the scalar coefficients a r e  

- 
K =  

- 
T =  

Equation (42) is a Mathieu equation of well-known stability properties. 
order to put the above equation in standard form, let 

In 
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and one obtains 

d'ak 

dz 
- t [ z i  - 2qcos ( 2 4 1  ak = 0 

A linear approximation7 can be used to predict the 
of the principal parametric resonance of Equation (43) for 
q. In te rms  of input acceleration for the present problem 
is 

(43) 

stability boundaries 
small values of 
this approximation 

2 0 ( 1 - Z )  w a gx=- -=- - - -  for < 1  
q -  g 2%m 

THEORETICAL AND EXPERIMENTAL RESULTS 
FOR SMALL MODEL 

Previous work with cylinders containing liquid has shown that many 
natural modes, both symmetric and nonsymmetric, exist for practical ranges 
of system geometry, and much complicated nonlinear behavior results from 
the interaction of their responses under longitudinal excitation. 
work, we have focused our attention primarily on the principal parametric 
resonance. Nevertheless, such a resonance exists for each natural mode of 
the system. Since the qualitative behavior is similar for each mode, for 
simplicity, we investigate the interaction of the various symmetric modes 
(m = 0) with the k = 1, m = 10 nonsymmetric mode for  various conditions of 
excitation. Sufficient theoretical and experimental data we re obtained to 
provide a reasonable comparison for the behavior of Tank A. 
data a re  presented in numerical form in Appendix €3. 

In the present 

All  experimental 

Natural Frequencies of Tank with Top Mass 

The variation of natural frequency with liquid depth for several modes 

Theoretical computations were performed for the largest 
All  symmetric modes in the given frequency range were 

of Tank A is shown in Figure 6, where each of the three par ts  is for a 
different top mass.  
mass (Fig. 6a) only. 
obtained,. although only one nonsymmetric mode is indicated. 
many other nonsymmetric natural modes existed in this range (note that 
experimental data for two nonsymmetric modes a r e  given in Figures 6b, c). 

Of course, 

Natural frequencies for the symmetric modes were determined 
experimentally by detecting peaks in the pressure at the center of the tank 
bottom and/or detecting peaks in the output acceleration 'of the top mass 
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Although Figure 6 indicates a condition of zero ullage pressure, up to p o =  
10 psig had to be used in order to obtain data for the symmetric modes. 
This was necessary to pkevent the occurrence of instability in some non- 
symmetric mode, in which a simple linear symmetric response no longer 
was present. Fortunately, this procedure was possible since the frequencies 
of symmetric modes were determined to be independent of ullage pressure.  
We emphasize, however, that frequencies of nonsymmetric modes a re  highly 
dependent on ullage pressure, so that data for the k = 1, m = 10 mode (as well 
as the k = 1, m = 13 mode) in Figure 6 were taken at po = 0. 
modes were taken as peaks in the wal l  response at the antinode of the axial 
wave form. 
liquid depths. 

Data for these 

Of course, the position of this antinode shifted with different 

Theoretical data for  Figure 6a were obtained by the use of a five-term 
(n = 1 to 5) expansion in Equation (12) and computing the value of the determi- 
nant for  the resulting 15 X 15 matrix. 
frequencies were selected in  the vicinity of the experimentally measured 
values fo r  a given mode, and the determinant value was plotted a s  a function 
of frequency. 

For computing the determinant, 

The zeros of this function were taken a s  the ~-~a tura l  frequencies-, 

Some deviation between theory and experiment can be seen to exist 
in Figure 6a. 
reduce this deviation. 
n = 10 te rms  for the third symmetric mode at a depth of h / l  = 0.55. 
the five -term expansions appeared to give a sufficiently good comparison 
between theoretical and experimental results, most of the computations 
were thereby limited in order to reduce the required digital computer time. 

Several interesting observations can be made from the data in 
Figure 6. Although the frequency of the m = 10 mode i s  considerably below 
those of the symmetric modes throughout most of the depth range, pres-  
surizing the tank can raise the nonsymmetric mode above the lowest sym- 
metric mode. 
parametric response requires an excitation frequency of 2w 1-10 at  a given 
liquid depth, which means an excitation near the f i rs t  symmetric mode. 
Thus, strong interaction between the two modes can be expected in deter-  
mining the dynamic stability of the principal parametric resonance for the 
m = 10 mode, 

However, the use of more terms in the expansions would 
This can be seen from the single point computed for  

Since 

Furthermore, to excite the m = 10 mode a s  a principal 

For  low liquid depths, it can be seen that the first  symmetric mode 
represents the f i rs t  coupled axial top mass-shell mode with only small liquid 
effects, while the second symmetric mode represents the f i rs t  coupled liquid- 
shell mode with only small top-mass effects. 
f i rs t  two modes a r e  interchanged for greater liquid depths as indicated by 
the dashed lines in Figure 6a which represent the respective decoupled 
modes . 

However, these roles of the 

From Figure 6, it  can be seen that variation in top mass had no effect 
on the nonsymmetric mode but a strong effect on the f i rs t  two symmetric 
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modes f o r  a middepth range of liquid, This is  shown further in Figure 7. 
Finally, the influence of ullage pressure on frequencies of the nonsymmetric 
linear mode was not measured since this has been determined by various 
previous investigations 

' 

Forced Axisymmetric Response 

The linear forced axisymmetric response comprises the' Eitial state 
for  determining dynamic stability of the system. Therefore, theoretical and 
experimental results a r e  compared for this part  of the tank behavior in order 
to get some idea of the strong influence it has on the instability mechanism. 

Figure 8 shows a comparison of theoretical and experimental axi- 
symmetric forced response for a frequency range which includes the first 
two modes with a liquid depth of h / l  = 0.69. Although the data were taken 
at po = 1 0  psig, the results a r e  independent of pressure,  a s  has already 
been mentioned. Here, the acceleration amplification of the top mass was 
chosen as a comparison parameter, although the liquid pressure at some point 
in the tank could have been used just as  well. An intermediate liquid depth 
was chosen as a worst possible condition fo r  using a given number of ser ies  
te rms  in the theoretical computations. 
that the most serious distortions of tank axial mode shape from a half-sine 
wave occurs a t  inte rmediate depth ranges. 

That is ,  previous work indicates 

Theoretical points were determined from a numerical inversion of 
Equation (28) by means of a digital computer. Of course, the net sum of 
the forced axial displacement components G at x = I form the part of the 
theoretical solution which is used in Figure 8. 
used, although ten te rms  were used fo r  part  of the range as  indicated. 
can be seen that more te rms  reduce the discrepancy between theory and 
experiment. Also, the location of the theoretical and experimental resonance 
points corresponds with the location of the respective natural frequencies 
for the first two symmetric modes in Figure 6a. 
behveen theory and experiment can be made as  good as is  desired, and the 
most te rms  in the expansions a r e  required at intermediate depths. 

Basically, five terms were 
It 

Thus, the agreement 

It has been mentioned that a plot of axisymmetric pressure response 
at some point in the liquid looks qualitatively like that of the top mass 
acceleration response shown in Figure 8. 
important in understanding the role of this initial state in determining 
dynamic stability of additional perturbed motion. 
tudinal excitation acceleration amplitude may be held constant as  frequency 
is varied, the magnitude of the actual s t ress  resultants which comprise the 
parametric forces can vary considerably in amplitude, depending on the 
input frequency. 

This correspondence is extremely 

That is ,  although longi- 

It can be surmised that the dynamic force exerted by the top mass 
on the cylinder contributes dominantly to the axial stress resultant Nxxa, 
while the corresponding axisymmetric internal pressure contributes 
dominantly to the circumferential s t ress  resultant Neea. Thus, we  have 
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the two sources of parametric excitation which appear in the stability 
Equations (39)  or  (43). 
sources present; however, it will  be seen later that the dynamic pressure 
exerts a stronger influence on stability for the configurations investigated. 

Parametric excitation occurs with either or  both 

Stability Boundaries 

Theoretical stability boundaries for the k = 1, m = 10 principal 
parametric mode were  determined by means of a five-coordinate term 
approximation(N = 5) in the single eigenvector approximation (k = l), 
Equation (43). Actual boundaries were computed by Equation (44). Experi- 
mental results were obtained for the corresponding conditions for which 
numerical results were computed, as well as additional conditions in order 
t o  demonstrate the influence of a number of parameters in the system. 

Experimental points were determined by holding input acceleration 
constant and slowly varying frequency in the vicinity of twice the k = 1, 
m = 10 natural mode until the subharmonic wall  motion appeared. W e  
emphasize that the frequency of this natural mode depended on both liquid 
depth and ullage pressure so  that the frequency range of i ts  principal 
parametric resonance varied correspondingly. However, a s  has been men- 
tioned previously, the frequencies of axisymmetric modes a r e  independent 
of ullage pressure, and their variation with liquid depth is not the same as 
that for the nonsymmetric mode, so  that a variety of behavior can be experi- 
enced with different combinations of the system parameters. 

The influence of liquid depth on the stability of the k = 1, m = 10 
principal parametric mode is shown in Figure 9, where input acceleration 
amplitude is plotted against the ratio of input frequency to twice the natural 
frequency w1-10 for this mode at the indicated fixed values for the other 
parameters of the system. For this frequency parameter, the experimental 
points were normalized to the frequency at the minimum point of the experi- 
mental boundary (which occurs essentially at twice the experimental natural 
frequency), while the theoretical points were normalized to twice the theo- 
retical natural frequency. 
of the boundaries since the theoretical and experimental natural frequency 
o l - l o  did not always coincide for the five-term computations (see Fig. 6a). 

This procedure allowed a better direct comparison 

Theoretical stability boundaries for a principal parametric resonance 

However, 
characteristically converge on zero for  the unity value of the frequency 
parameter used here? when damping is not included in  the theory. 
the experimental boundaries should fall above and within the theoretical 
boundary since damping is always present in  the experimental system. 
higher experimental boundary corresponds to the presence of increased 
damping. 

A 
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Note that the three boundaries shown in Figures 9a - c are plotted to 
a different scale, each being about one order of magnitude apart. 
emphasized in Figure 
logarithmic vertical scale. 
liquid is very effective in producing the instability in the system for this 
mode. That is, instability occurs at lower input accelerations with more 
liquid present. This result is logical if one considers that the parametric 
action occurs through the interaction of an inplane s t ress  resultant with the 
curvature of the shell at a given point. Thus, in the stability equations, a 
te rm of the type Neea (azw/8e2) is much larger than one like NxXa(a2w/aO2) 
for the mode being considered, so that mathematical and physical correspondence 
follows. 

This is 
e r e  only the experimental points are plotted on a 
An immediate conclusion can be made that the 

Good correspondence between theory and experiment is shown in 
Figures 9a - b while that in  Figure 9c is not so good. 
the completely filled cylinder resulted primarily because of experimental 
e r r o r  at such low values of input acceleration. 
dynamic analyzer filter was used for measuring the input at nearly a single 
frequency, the input was within the mechanical noise level of the cooling fans 
of the electrodynamic shaker so that the actual input was more wide band than 
desired. 
because of the extraneous input energy. 
for the data of Figures 9a - b since the input was above 0.01 g, which is about 

and experiment is quite good. 

This discrepancy for 

Although a narrow band 

Hence, the experimental boundary falls outside that for the theory 
This problem was not so significant 

The overall agreement between theory . the noise level in the shaker system. 

The effects of ullage pressure on dynamic stability a r e  shown in 
Figure 10. 
wide range of pressure effects. 
parison on a logarithmic scale in Figure 1Oc. In Figures loa-b, 
mental value of w l w l 0  was used for normalizing the theoretical points since 
the theoretical natural frequency w a s  not computed for this case. 

These data can be used with those of Figure 9a to show a fairly 
The three boundaries a r e  shown for com- 

the experi- 

Deviation between theory and experiment occurs for two different 
reasons in  Figures loa-b. 
Figure 10a r i ses  much more rapidly than that for the theory. 
because of the presence of coupling with the next lower nonsymmetric mode 
in the system. 
since many modes a r e  present, and the modal density is quite high. 
coupling can be predicted theoretically only i f  stability is studied by the 
coupled set of Mathieu Equations (39) rather than the single eigenvector te rm 
approximation, Equation (43). 

The left side of the experimental boundary in 
This occurred 

This type of coupling is quite prevalent in  a practical system 
Such 

Deviation between theory and experiment occurred for another reason 
for the data in Figure lob. Here, the excitation frequency virtually coincides 
with the theoretical frequency for the third symmetric mode (see Fig.  6a). 
Thus, the influence of this mode was  strongly felt in the shape of the stability 
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boundary. However, the experimental third mode occurs at a somewhat 
higher frequency, so that its effects a r e  not so pronounced on the experi- 
mental curve. 
probably would produce a better correspondence for this case. 

The use of more terms (i. e., N > 5) in Equation (43) 

The above explanation based on the interaction of linear symmetric 
and parametric nonsymmetric modes can also be applied to the relative 
position of the three boundaries in Figure 1Oc. Note it does not simply 
follow that in all cases an increase in ullage pressure will tend to increase 
stability (i. e., raise the stability boundary). The boundary for 3 psig is 
somewhat higher than that for 6 psig, 
integrated dynamic pressure loading of the initial state can be larger at the 
frequency 2wl-10 for 3-psig ullage than it is at  6-psig ullage. That is, the 
total dynamic pressure loading is determined by the dynamic pressure 
distribution at the driving frequency, a s  well a s  the proximity of the driving 
frequency to a natural frequency of a symmetric mode. 

This probably occurs because the 

The above arguments can also be applied to explain the location of the 
stability boundaries in Figure 11, in which the influence of top mass on stabil- 
ity has been determined. Zero liquid depth was  used to eliminate the influence 
of the liquid. In general, one might expect that the smallest mass  would pro- 
duce the least parametric force. However, the force is  a function of both the 
mass and i ts  acceleration for a given parametric mode so  that the tank with 
the lighter mass  is more unstable for the given conditions. 
Figures 6 a - c  shows that excitation at 2wl-10 is much nearer the first  
symmetric mode frequency for the smallest mass  than for the other two in 
the case of the empty tank. 
with intermediate location of the first  symmetric mode frequency in Figure 6 
is correspondingly intermediate in i ts  position in Figure 11. 
of the system with the largest mass  then falls at the opposite extreme. 

A glance at 

Further, the boundary for the intermediate mass 

The behavior 

It appears that the single eigenvector term approximation, Equation (43), 
is quite useful for determining a reasonably good approximation for dynamic 
stability in the system investigated. However, even for the limited data 
obtained in this study, it is apparent that the more exact representation, 
Equation (39), is required for an overall investigation. 
sized further by subsequent data to  be presented. 

This will be empha- 

Nonlinear Response 

Although no nonlinear analysis capable of predicting subharmonic 
response in the principal parametric mode was formulated in this study, 
some experimental observations of this type of response were carried out 
in order to present a better overall picture of parametric behavior in a 
liquid-shell system coupled with a top mass.  
influence of several  parameters on the principal parametric response in the 
k = 1, m = 10 mode a r e  shown for Tank A in Figures 12, through 14, where 

These results showing the 
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wall  response is plotted as a function of frequency ratio. These curves dis- 
play the usual character of a principal parametric response3, 
a r e  either nonlinear softening (bend to the left) or  nonlinear hardening (bend 
to the right) and include jump phenomena where the response suddenly appears 
and jumps up to a finite value o r  suddenly disappears as a result of damping. 

’ 

in that they 

Figure 12 shows the influence of liquid depth on the subharmonic 
These curves correspond to the stability boundaries given in 
An increasing bend in  the response indicates the presence ‘of 

response. 
Figure 9. 
greater nonlinearity as long as input acceleration is held constant or  is a 
lower value for the curves with greater bend. Thus, it may be concluded 
that the largest nonlinearity was present at the largest liquid depth. That is, 
the largest nonlinear interaction (which is distinct from the parametric inter- 
action discussed in the previous section) between the liquid and shell occurs 
at the largest liquid depth. 

Similar response curves showing the influence of ullage pressure are 
shown in Figure 13. These data correspond to the stability boundaries given 
in Figure 10. Here, it  is most interesting to note that at zero pressure the 
response is softening, a t  3 psig, it  becomes hardening, and, at 6 psig, it  
again becomes softening. It may be noted from Figure 9a that the frequency 
of 2w1-10 has changed i ts  position relative to the first  two symmetric modes 
and probably is the reason for the changing behavior. 

Response curves for different top masses  on an empty tank a re  shown 
in Figure 14. 
Figure 11. 
for different masses.  
an effect on the response a s  the liquid for the mode investigated. 
behavior is similar to the effect of these parameters on the parametric action 
itself, which has been discussed earlier.  

These responses correspond to the stability boundaries in  
Here, no particularly dramatic change in the curves takes place 

Apparently, the top mass does not have so pronounced 
This 

It must be emphasized that response in a principal parametric mode 
is probably the simplest kind of nonlinear response (and the only one that has 
been explained analytically to date) that can be observed in the system under 
consideration. Many other types of nonlinear response, such as beating, 
amplitude modulation, superharmonics, etc., can be observed experimentally, 
In the present investigation, we have seen that liquid surface motion did not 
enter the basic problem. 
the present system in which nonlinear liquid surface coupling does occur. 
The lower trace is also the tank wall  response but is expanded on a greater 
time scale. The tank was being excited under the indicated conditions so 
that it was responding basically in the k = 1, m = 10 principal parametric 
mode. However, in addition the high frequency tank motion, it sustained a 
steady-state, low frequency amplitude modulation, and, simultaneously, the 
liquid surface was  excited at  a large amplitude in its first symmetric mode. 
Such nonlinear coupling between the liquid surface and high frequency tank 

However, Figure 15 shows a nonlinear response in  
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wall motion has been explained previously by Chu and Kana" in  a partially 
filled tank which is subject to lateral excitation and which sustains basically 
harmonic wall  response. The present case is even more complicated since 
the wall  sustains basically 1 /2-subharmonic wall response. 

Only nonlinear wall responses were shown in Figures 12 through 15. 
It must be emphasized that similarly complicated responses occur in pres-  
sure as well. Some details of pressure changes, as well as other types of 
complicated wall responses, a r e  given in the next section for various con- 
figurations of the larger model tank. 

EXPERIMENTAL RESULTS FOR LARGE MODEL WITH STIFFENERS 

Many types of nonlinear response besides subharmonic motion could 
be observed while testing Tank A .  
detailed observations of such responses in the larger, more representative 
model in order to get a better physical feel for their significance in space 
vehicle systems. In addition, the effects of ring stiffeners a re  determined 
by including different numbers of rings so that some judgment can be made 
about the possibility of such responses occurring in Saturn-type launch 
vehicles. Examples of stability boundaries a r e  given for those cases which 
appeared to be the most unstable in each respective tank, that is, where the 
tank became unstable with the least input acceleration amplitude. Only 
typical results a r e  presented in this section. For  the most part, it  will  be 
seen that the results provoke more questions than answers, which emphasizes 
that only the surface has been scratched in the study of the general a rea  of 
nonlinear response of a liquid-tank system. 

However, it was decided to perform 

Results from Tank S - 0  a r e  shown in Figures 16 and 17. Considerable 
detail on subharmonic motion in this tank has already been presented in our 

compare with that which follows for tanks with rings installed. 
ear l ier  work 2 . Here, we have included only enough additional results to 

Stability boundaries for several principal parametric modes in 

The wall  
Tank S - 0  are shown in Figure 16, while an example of principal parametric 
response is shown in Figure 17, for the k = 1, m = 8 mode. 
response was measured at an antinode of the motion. 
unstable regions can readily be seen from the occurrence of three unstable 
regions between 68 and 75 cps. 
frequency domain for this tank. 
acceleration, the most usual type of response by far occurs as some non- 
linear form. 

A great density of 

A similar density occurs throughout the 
Thus, at any appreciable value of input 

From Figure 17, it can be seen that the subharmonic wal l  response is 
hardening for the example given. At the same time, however, the bottom 
pressure first decreases and then increases as the frequency is increased. 
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Phases between the various parameters can readily be determined. 
amplitude of the center trace is proportional to input acceleration which was 
held constant by the shaker control system. However, this trace is in-phase 
with input displacement; therefore, it  is out-of -phase with input acceleration. 
Jump phenomena a r e  not indicated in  these photographs, although, of course, 
they do accompany such responses. Thus, sudden changes in wall displacement 
and pressure amplitudes can readily occur. 
responses also can occur in Tank S - 0 .  
their occurrence in the ring-tanks in  order to emphasize that they still occur 
for these tank configurations, although not to such a great extent, depending 
on the number of rings present. 

The 

Many other kinds of nonlinear 
However, we will  present examples of 

Figures 18 through 21 show results obtained in Tank S-1. 
stability boundaries are shown in Figure 18. Note, however, that two different 
ones a r e  given for the k = 2, m = 11 mode. 
mode causes the double boundary. Actually, one mode is proportional to 
cosme and the other to sinm6. 
between the two responses could be observed experimentally. Normally, both 
responses should occur at the exact same frequency. 
in the tank geometry cause the split. 

Three 

A split natural frequency for this 

The shift in spatial distribution in displacement 

In this case, eccentricities 

W a l l  displacements corresponding to two of the boundaries in 
Figure 18 are shown for two subharmonic responses in Figure 19, while 
photographs for the k = 1, m = 1 2  principal parametric motion a re  shown in 
Figure 20. Complete data for 
increasing wall amplitudes could not be obtained for either mode because of 
two different reasons, as i s  indicated in Figure 19. 

Both wall responses a re  nonlinear softening. 

Prohibitively large responses began to occur at larger amplitudes for 

that large tank s t resses  were eminent, and the observa- 
the k = 1, m = 12 mode. 
at best judgment, 
tions were discontinued. On the other hand, at large responses, the k = 2, 
m = 1 mode began to change into an even more interesting behavior, as  
indicated by the region marked POGO. 

That is, the audible response from the tank indicated, 

Figure 21 gives an example of POGO behavior which occurred within 
the region indicated in Figure 20, and which could occur quite readily for 
many different input conditions in the present system. 
was set on automatic constant acceleration control for this case, the accelera- 
tion actually produced by the control system was  not held at constant amplitude 
because of the interaction between the pressure response and the control 
system. 
forms result. 
thrust in a launch vehicle, it  can be seen that a form of POGO behavior is 
occurring where an oscillatory deviation results between the simulated 
thrust (which itself is oscillatory at a higher frequency here) and i ts  intended 
values. 
posed on the steady thrust which is present and produce catastrophic failures. 

Although the shaker 

This interaction occurs in such a way that the amplitude modulated 
Since the output of the automatic control system represents 

In an actual vehicle, such oscillatory deviations can become super- 
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It must be emphasized that the laboratory example of POGO behavior 
in Figure 21 applies only to the closed-loop interaction of the present model 
system with the presently used shaker control system. 
that similar behavior would occur in a launch vehicle only i f  its closed-loop 
hydraulic -structural system were dynamically similar to that of the present 
experiments. An exact similarity would, of course, be highly unlikely; 
however, i t  is well known that certain types of POGO instabilities can readily 
occur in typical systems. 
reminder that such POGO behavior is possible in complicated liquid-structural 
systems and must be given due consideration. 

One can only conclude 

Thus, Figure 21 merely serves as a cautious 

Typical results obtained from Tank 5-2  a r e  shown in Figures 22 and 23. 
Several stability boundaries for principal parametric motion a r e  shown in 
Figure 22, while photographs of corresponding nonlinear responses for each 
respective region a r e  shown in Figure 23. 
response corresponding to an entirely different form of instability is shown 
in Figure 23. For  this response, both pressure and input acceleration are 
relatively constant in  amplitude, but wall displacement sustains a form of 
amplitude modulation o r  beating within the region marked "Beating" in 
Figure 22. Thus, a definite region of instability for this form of response 
occurs similar to those for principal parametric motion. Closer observation 
showed that the response is basically a beat between the k = 3, m = 17 and 
the k = 3, m = 18 modes, and is excited at an input frequency which is near 
fg-17 t f3-18. This type of unstable region has been predicted for systems 
which are governed by coupled Mathieu equations but, to the authors' 
knowledge, have never been observed previously in any experimental system. 

Note that still another type of 

In addition to the above configurations, the large model tank was  
tested in a three-ring configuration. However, for this tank, it is a t  this 
point that the previously described nonlinear responses a re  no longer pre-  
valent for reasonable input accelerations. Thus, for the case of three or 
more rings, the basic response to longitudinal excitation becomes axi- 
symmetric and linear, such as that for the initial state. 
increasing the number of ring baffles, then, increases the stability of the 
system. This can be seen more directly from Figures 16, 18 and 22, where 
an increased acceleration input is required to produce instability as more 
ring baffles a r e  present.. 
cides with a nodal circle appear to be most unstable. 

In general, 

Further, those modes in which a ring baffle coin- 

GENERAL DISCUSSION AND R E  COMMENDATIONS 
. FOR FURTHER WORK 

It is readily apparent that the problem studied in the present work is 
highly complicated in nature and encompases interactions between various 
types of responses, each of which, when studied alone, poses quite a formidable 
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. problem. In this light, the scope of the present program was planned and 
executed in a logical sequence. 

A theoretical and experimental study has been conducted for a longi- 
tudinally excited, flat-bottom, pressurized cylinder which is partially filled 
with liquid and supports a rigid top mass. 
possible system which gives a good description of parameters that are 
significant in launch vehicle systems. 
presented indicate that all parameters considered have a significant influence 
on initial-state axisymmetric responses, dynamic instability, and subsequent 
nonlinear responses. 
several respects, i t  is still  sufficiently realistic so  that the resulting theory, 
as verified by the experiments, can now be applied to systems of actual-size 
parameters in order to obtain at least an estimate of conditions which can 
produce parametric instabilities. 

This appears to be the simplest 

The detailed results which have been 

Although the model comprising Tank A is idealized in 

The second phase of the program has sought to answer questions which 
In particular, it  a r i se  from the use of the idealized system in the first  phase. 

now appears that parametric instabilities a r e  not likely to occur in tanks of 
Saturn-type vehicles, so long as the tanks a r e  stiffened to an extent which i s  
similar to that of the three-ring model tank of the present study. However, 
in this regard, i t  is realized that considerable uncertainty remains as to what 
type of responses will  be prevalent in tanks where such a degree of stiffening 
is not present. 
defined precisely from the present results. Certainly, a better physical feeling 
for the required stiffness has been presented, but a more exact answer can 
come only from additional work. In particular, the significance of effective 
anisotropic properties of stiffened tanks must be explored theoretically along 
the lines of the work of Bagdasaryan and Gnuni5, and experimental verifica- 
tion should be provided. It must be recalled that some upper stage tanks in 
Saturn vehicles have very little, i f  any, wall  stiffeners. 

In fact, the "degree" of stiffening present cannot even be 

When using the developed theory for design estimates, one should bear 
in  mind that bottom elasticity, as well as stiffening effects, have been 
neglected. At present, there is no simple means whereby these bottom effects 
on pressure distribution can be determined. 
solution appears highly desirable. 
finite difference methods will produce a suitable prediction of axisymmetric 
linear responses in a more representative tank. This, of course, has a 
profound bearing on the stability problem since this type of response repre- 
sents the initial state of the system. 

The development of a membrane 
However, it appears that nothing short of 

The present results indicate that parametric responses in the tank 
systems occur over quite narrow bandwidths of frequency, although the 
modal density of these narrow bands is very high. 
the present work just how readily parametric responses can occur in a 
system that is subject to excitation energy spread over some band rather 

Thus, it  is not clear from 
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than at a single discrete frequency. The answer to this question must come 
from a study of the response of models such as those herein when subject to 
random inputs having various bandwidths. Thus, a more representative 
input can be achieved, 
recommended. 

Such a study can readily be performed and is highly 

Eventually, the various types of nonlinear responses which have 
been observed will have to be catalogued and each considered as a possible 
potential problem. Needless to say, only questions remain in this regard, 
with very little of the present results being of much help in explaining the 
behavior. From an analytical point of view, nonlinear forms of the equations 
will be required in determining the responses, and, without doubt, coupled 
stability equations must be utilized, even for linear approximations. Much 
remains in the study of the stability of coupled Mathieu-Hill equations. 

The importance of dynamic response in the present system is vividly 

One is tempted to say that apparently the liquid-tank system 
demonstrated by the occurrence of a POGO-like behavior under controlled 
excitation. 
is highly prone to display such behavior when coupled with almost any con- 
trol  system (such as  it is in an actual vehicle). 
the fact that the total pressure, whether linear or nonlinear, when integrated 
over the tank bottom, results in a very significant apparent mass, and the 
sensitivity of this apparent mass  to frequency intuitively indicates the pos- 
sibility of such instabilities being present. 
this type of interaction. 

This probably results from 

Again, very little i s  known about 

Various other comments and recommendations could be set forth in 
However, for the sake of brevity, view of the results of the present study. 

only one more will be illuminated. 
strong coupling occurs between wall motion, liquid pressures, bottom effects, 
end mass, etc., all of which a r e  present as multiple systems in a composite 
vehicle. Therefore, it  appears highly desirable to investigate a single 
system, such as that studied herein, from a mechanical impedance 
(preferably transmission matrix) point of view, so that the dynamics of 
tandem systems could be studied simply by combining the tandem elements. 
The development of the transmission matrix, which will  be frequency 
dependent for a single liquid tank system, i s  itself no easy task. But, once 
it is accomplished, it can then be used for design purposes in general. 
must be emphasized, however, that the mechanical impedance methods 
are applicable only where linear responses a r e  anticipated, such as for 
sufficiently stiffened tanks. 

The present results indicate that a 

It 
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Figure 3. Dynamic St  ity Apparatus For Large Model 
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A. 2 Coefficients for Equations (21) through (23) 

Coefficients for Equation (21): 

n k l  

Coefficients for Equation (22): 

coefficients for  Equation (23): 
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A. 3 Elements of n X 1 Column Submatrices in Equations (27) 

A.4 Elements of the Matrices in Equations (40) 

Elements of [ M i  ] : 

Elements of [ M z ] :  

Elements of [M3]  : 

Elements of [ K1] : 

Elements of [ K2] : 

Elements of [ K3] : 
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Elements of [ T 1 ] : 

Elements of [ Tz] : 

Tzn1k = 0 

Elements of [Tg]:  

Tgnik = 0 

where, for each of the above matrices, 

nr = 1 to N 

k = 1 to 3N 

The first  five roots* of the equation in 

J k ( p m j ) = O  , m =  10 

A. 5. 

1 11.77088 

2 16.44785 

3 20.22304 

4 23.76071 

5 27.18202 

*These roots a r e  obtained by interpolation with a Bessel function 
subroutine accurate to five o r  six figures. 
for m = 0 to 8 are given in W, H. Chu, "Breathing Vibrations of a Partially 
Filled Cylindrical Shell-Linear Theory, 
pp. 532-536, December 1963. 

In addition, the f i rs t  five roots 

J. Appl. Mech., Vol. 30, No. 4, 
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TABLE B. 2. AMPLITUDE AMPLIFICATION 

Tank A 

Wo = 34.53 lb 

po = 10 psi  

h/P = 0.69 

f ,  

cps 

241.1 
244.2 
245.3 
248.5 
251.7 
255.9 
257.4 
257.7 
258.8 

261.4 
263.0 
264.5 
266.5 
269.3 
272.2 
274.3 
276.7 
281.0 
285.1 

295.6 
300.3 
303.8 
308.8 
310.5 
311.3 
311.7 
313.2 
314.8 
316.8 

259.9 

2926 2 

5. 6 
6.0 
6.7 
9.0 

11.4 
19.7 
24.6 * 

26. 8 
39.2 
65.9 
98.4 
56.2 
31.9 
20.2 
12.9 

9.0 
7.5 
6.2 
4.6 
3.2 
2. 6 
1.7 
1.6 
1.2 
0.5 
0.2 
0.3 
0.9 
0.1 
0.6 
1.4 

Note: Plotted on l?fgure 8. 
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f , 
cps 

319.5 
320.4 
321.2 
322.0 
322.6 
323.6 
324.4 
325.2 
325.6 
325.9 
326.2 
326.3 
327.5 
328.3 
331.6 
336.5 
340.3 
344.6 
349.5 
356.7 
368.6 

bp d / g g  

1 b 7  
2.7 
3.4 
5.3 
5.3 
9.1 

16. 3 
34.2 
48,7 

8.4 
8.9 

19.7 
15. 5 
11.5  

5.3 
3,4 
2.9 
2.4 
2b2 
1.8 
1.5 
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TABLE c. 1. STABILITY BOUNDARIES 

PO = 0 psi. h/f = 0.818 

Tink S - 1 Tank S-2 

(Fig. 16) 
Input 

Frequency. Acceleration, 
cps L 
67.0 0.0960 
67 .4  0.0717 
67.8 0.0384 
68.1 0.0534 
68.5 0.0293 
68.8 0.0214 
69.1 0.0156 
69.5 0.0159 
69.9 0.0101 
70.2 0.0043 
70.6 0.0073 
70.9 0.0397 
71.2 0.0189 
71.6 0.0201 
72.1 0.0580 
72.5 0.0595 
72.7 0.0488 
73.0 0.0317 
73.3 0.0238 
73.5 0.0165 
73.8 0.0189 
74.2 0.0327 
74 .7  0.0465 

(Fig. 18) 

Frequency, 
cp. 

140.6 
140.9 
141.4 
141.9 
142.4 
143.0 
143.5 
143.9 
144.3 
144.7 
145.1 
145.6 
146.0 
r46.3 
147.0 
147.6 
148.1 
148.5 
149.1 
149.5 
149.9 
150.2 
150.5 
151.0 
151.5 

~ 

Input 
Acceleration, 

0.146 
0.131 
0..137 
0.153 
0.192 
0.177 
0.149 
0.128 
0.131 
0.134 
0.131 
0.155 
0.171 
0.216 
0.311 
0.286 
0.207 
0.169 
0.131 
0.119 
0.128 
0.156 
0.195 

. O .  195 
0.165 

*Beating subharmonic 
tLarge amplitude wall motion 
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(Fig. 22) 

Frequency, 
CPB 

320.1 
321.3 
322.0 
324.1 
325.2 
326.0 
327.1 
327.8 
328.3 
328.8 
329.3 
329.8 
330.3 
330.9 
331.5 
332.1 
332.8 
333.7 
334.4 
334.8 
334.9 
335.3 
335.6 
335.7 
336.3 
336.6 
337.0 
337.9 
338.6 
339.6 
340.4 
341.4 
341.9 
342.5 
343.5 
344.1 
344.1 
344.6 
344.9 
345.9 

Input 
Acceleration, 
B 

1.46 
1.37 
1.31 
1.27 
0.98 
0.83 
0.854 
0.945 
0.930 
0.838 
0.738 
0.671 
0.625 
0.610 
0.610 
0.640 
0.640 
0.537 
0.482 
1.050* 
0.519 
0.747 
0.733 
0.880* 
0.635 
0.681* 
0.550 
0.464* 
0.345* 
0.238* 
0.159* 
0.089* 
0.063* 
0.048+ 
0.104* 
0.183* 
0.421 
0.348 
0.335* 
0.427 

Frequency. 
cp8 

346.6 
347.3 
348.3 
348.9 
349.7 
350.7 
351.5 
352.0 
352.8 
353.5 
354.2 
354.9 
355.6 
356.4 
357.0 
357.7 
358.5 
359.1 
359.9 
360.8 
361.7 
362.3 
363.2 
363.7 
364.5 
365.2 
366.1 
366.8 
367.6 
368.7 

Input 
Acceleration, 
B 

0.409 
0.391 
0.372 
0.421 
0.625 
0.732 
0.726 
0.800 
1.128 
1.401. 
1.388* 
1.038* 
0.906* 
0.940* 
0.885* 
0.778t 
0.565t 
0.451t 
0.378t 
0.293 
0.171 
0.110 
0.098 
0.122 
0.171 
0.229 
0.348 
0.458 
0.625 
0.975 



TABLE C. 2. SUBHARMONIC WALL RESPONSE 

Tank S- 1 
po = 0 psi  
h / l  =0 ,818  
gx = 0.2 

(Fig.  19) 

Frequency, 
cps 

151.9e 
151.2 
150.7 
150. 
150.1 
149.8 
149.6 
149.. 1 
148.8 
148.5 
148.1 
147.7 
147.4** 
146.W 
145.5 
145.1 
144.7 
144.3 
143.9 
143.6 
143.1 
142.5f 
141.9. 
141.4 
141.0 
140.7 
140. I*  

W a l l  
Displacement, 

mil  51(p -p ) 

*No subharmonic 

t Beating 
**Complicated respofise 
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I-- 

2.24 
7.56 

1.40 
11.90 
11,76 
14.60 
15.00 
19.60 
21.70 
26.30 

-- 

-- 
e- 

0.70 
2.80 
6.72 

14.60 
J9.32 
30.40 
34.30 

9.66 
IO. 92 
11.90 
3.50 

-- 

-- 
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